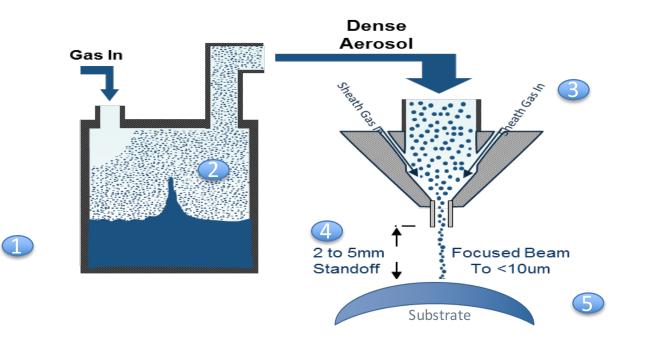
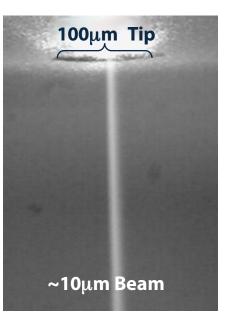

3D Printing of Flexible Circuits and Sensors

Presentation Outline

- Company Introduction
- Aerosol Jet Technology Basics
- Material Considerations
- Laser Sintering for Low Temperature Processing
- Strain and Thermocouple Gauges
- Conclusion




Differentiated Leader in Additive Manufacturing

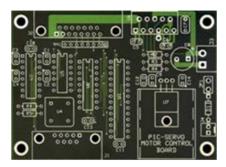
Aerosol Jet Technology Basics

- D Atomize Liquid Electronic Material: conductive inks, dielectric, (1-1,000 cP)
- Wist of 1 to 5 um Ø highly dense, highly loaded droplets
- 3 Sheath gas surrounds and focuses particle beam
 - Continuous Flow Exits at 50m/s remains collimated for up to 5 mm
- Print on planar and non planar substrates


Art to Part Process

Design

	0			
	1	//		-
diam'r.	-		0	
_			1	
	0		1111	~
		1		
Prominente, 168	Corflote 18	Completion: 37.64 Durient Net	Top 1	· If Chester
Command		Message		
10000	Bentute	A X 7188 15 Y 3084	4	14d (
				-


- CAD Model
- Convert to DWG file
- Tool paths generated with Optomec software

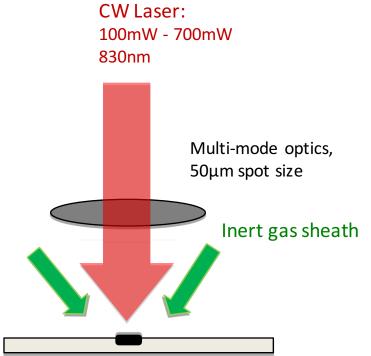
Process

- Liquid raw material
- Create fine (femto Litre) aerosol
- Focus to beam (~10µm >)
- Post-process (dry, cure, sinter...)

Part

- 3D Conformal printing
- Interconnects
- Fine line traces
- Embedded passives
- Selective Coatings
- Microfluidic components

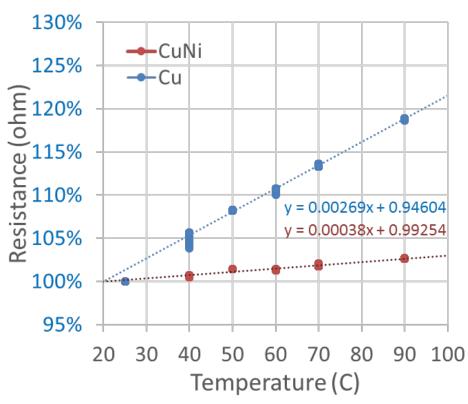
Materials for Sensors and Flex


Material	Resistivity (μΩ·cm)	TCR	Yield Strength (MPa)	Elongation (%)	Sintering (C)	Seebeck Coefficient (µV/K)
Ag	1.6	3.8E-3	55	35	120	6.5
Au	2.4	3.4E-3	205	45	200	6.5
Cu	1.7	3.9E-3	117	40	220	6.5
Ni	7.0	5.8E-3	140-350	40	350	-15
Cu ₅₅ Ni ₄₅	49.0	-7.4E-5	140	45	400	-35

- Ag, Cu, Au are best electrical conductors
- Cu, Ni are harder materials with good solderability, low electromigration
- CuNi alloy has low TCR, higher resistance, high Seebeck coefficient

Laser Sintering

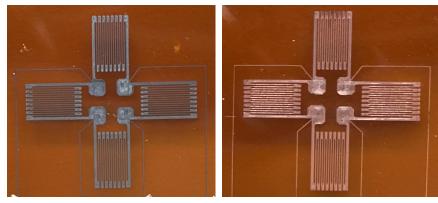
- Sintering of high temperature materials on low temperature substrates possible with localized heating
- Inert and reducing cover gas (H5N) inhibits oxidation of air sensitive materials
- Ink samples can be dried with laser at low power, then sintered at higher power
- Scan speeds from 1-20+ mm/s depending on power
- Sintering reactions self-limiting

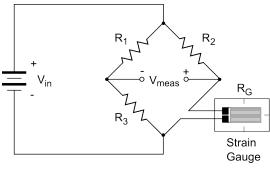

Temperature Coefficients

Resistance stability (extrapolated):

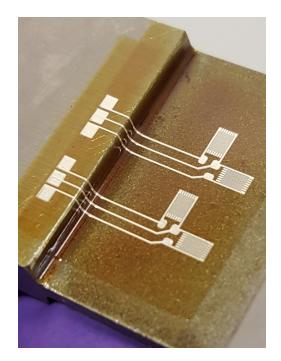
- Ag [uncoated] = 4.5%(ohm)/yr
- Ag [coated] = 0.4%(ohm)/yr
- Cu = 2.75%(ohm)/yr
- CuNi = 0.06%(ohm)/yr

TCR:


Material	TCR (measured)	TCR (literature)		
CuNi	3.7E-4 C ⁻¹	7.4E-5 C ⁻¹		
Cu	2.7E-3 C ⁻¹	4.0E-3 C ⁻¹		
Ag	2.1E-3 C ⁻¹	3.8E-3 C ⁻¹		
Au	1.4E-3 C ⁻¹	3.7E-3 C ⁻¹		

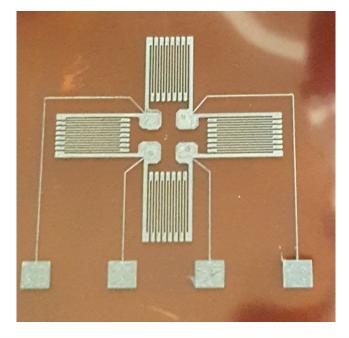


*https://www.allaboutcircuits.com/textbook/direct-current/chpt-12/temperature-coefficient-resistance/

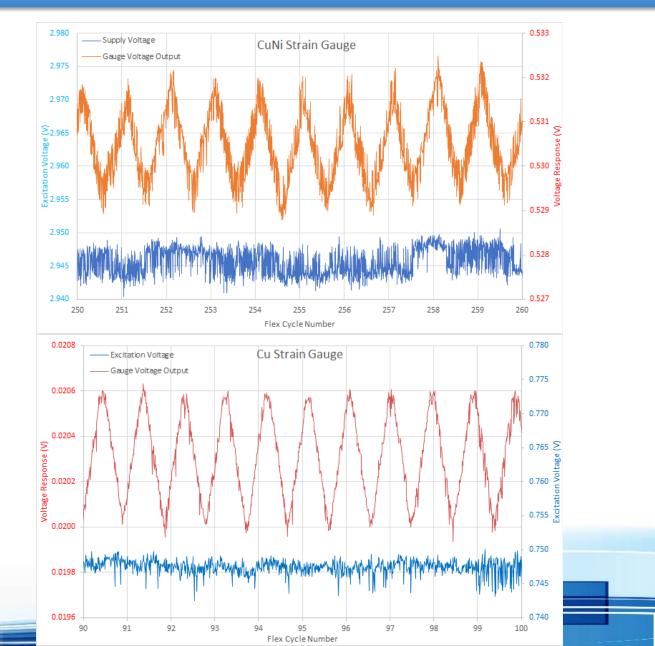

Flex Application: Strain Gauges

Constantan (left) and Copper (right) strain gauge

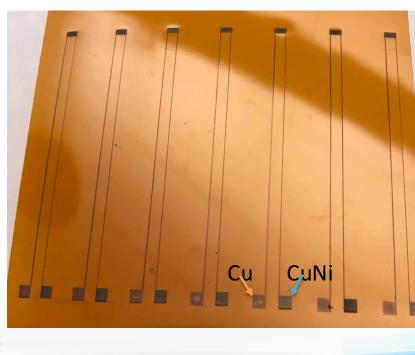
Wheatstone Bridge Circuit diagram

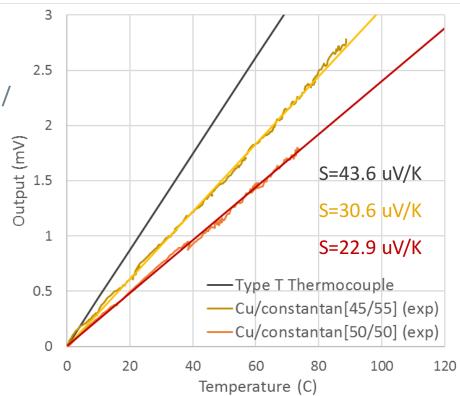


Half Bridge Strain gauge printed on steel beam showing 3D interconnects


Strain Gauge Performance

- Cyclic bending over 60 mm diameter pipe (0.6% strain)
- >5,000 flexes without signal degradation


CuNi gauge on 0.005" Kapton



Copper–Constantan Thermocouples

- Two different CuNi formulations
 - Cu₅₅Ni₄₅
 - Cu₅₀Ni₅₀
- Seebeck coefficient approaches type T thermocouple (Cu / Cu₅₅Ni₄₅)
- Pad to pad resistance ~2kOhm

Summary

- Air sensitive copper-based materials printed with Aerosol Jet
- Local sintering with Laser inert shield gas results in high conductivity
- Laser sintering allows low-temp substrates to be used with sintering
- Copper and Copper alloy strain gauges cycled over 5,000 times on Kapton
- Copper-Constantan printed thermocouples demonstrate linearity

Thank You...

Questions?

